
django-windowsauth

Dan Yishai

Oct 29, 2021

INSTALLATION AND SETUP

1 Features 3

i

ii

django-windowsauth

Easy integration and deployment of Django projects into Windows Environments.

INSTALLATION AND SETUP 1

django-windowsauth

2 INSTALLATION AND SETUP

CHAPTER

ONE

FEATURES

• Deploy to Microsoft IIS quickly using wfastcgi and createwebconfig command

• Authenticate via IIS’s Windows Authentication

• Authorize against Active Directory using ldap3 package

• Manage LDAP connections for easy integrations

• Debug using django-debug-toolbar

• NEW Create Task Schedulers for Django management commands

1.1 Quick Start

1. Install with pip install django-windowsauth

2. Run py manage.py migrate windows_auth

3. Add “fastcgi application” with wfastcgi-enable

4. Configure project settings:

INSTALLED_APPS = [
"windows_auth",

]

MIDDLEWARE = [
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.auth.middleware.RemoteUserMiddleware',
'windows_auth.middleware.UserSyncMiddleware',

]

AUTHENTICATION_BACKENDS = [
"windows_auth.backends.WindowsAuthBackend",
"django.contrib.auth.backends.ModelBackend",

]

WAUTH_DOMAINS = {
"<your domain's NetBIOS Name> (EXAMPLE)": {

"SERVER": "<domain FQDN> (example.local)",
"SEARCH_BASE": "<search base> (DC=example,DC=local)",
"USERNAME": "<bind account username>",
"PASSWORD": "<bind account password>",

(continues on next page)

3

https://pypi.org/project/wfastcgi/
https://docs.microsoft.com/en-us/iis/configuration/system.webserver/security/authentication/windowsauthentication/#:~:text=You%20can%20use%20Windows%20authentication,Windows%20accounts%20to%20identify%20users.&text=When%20you%20install%20and%20enable,the%20default%20protocol%20is%20Kerberos.
https://ldap3.readthedocs.io/en/latest/
https://django-debug-toolbar.readthedocs.io/en/latest/

django-windowsauth

(continued from previous page)

}
}

optional
STATIC_URL = '/static/'
STATIC_ROOT = BASE_DIR / "static"

MEDIA_URL = '/media/'
MEDIA_ROOT = BASE_DIR / "media"

5. Generate web.config files with py manage.py createwebconfig -s -m -w.

6. Create new IIS Website from the project files

1.2 Installation and Setup

This is a detailed walk-through the django-windowsauth installation and setup process.
For easy and quick installation please refer to the Quick Start guide.

1.2.1 Install and Setup IIS

First, you may need to install IIS role. This can be done though the Control Panel > Add and Remove Programs >
Install Features (appwiz.cpl) or via Server Manager.

Those are the features you should select:
1. Application / CGI

2. Security / Windows Authentication

3. (suggested) Performance Features / Dynamic Content Compression

4. (suggested) Health and Diagnostics / Request Monitor

5. (suggested) Health and Diagnostics / Tracing

Next you will need to unlock some configuration section to later use the createwebconfig management command.

To unlock configuration sections:
1. Open IIS Manager > Configuration Editor

2. Select section system.webServer/handlers

3. Click Unlock section on the right sidebar.

4. Repeat for sections system.webServer/security/authentication/anonymousAuthentication
and system.webServer/security/authentication/windowsAuthentication.

Note: For more information visit the IIS Topic on Microsoft Docs: https://docs.microsoft.com/en-us/iis

4 Chapter 1. Features

https://docs.microsoft.com/en-us/iis

django-windowsauth

1.2.2 Getting it

You can get django-windowsauth by using pip:

$ pip install django-windowsauth

If you want to install it from source, grab the git repository and run setup.py:

$ git clone https://github.com/danyi1212/django-windowsauth.git
$ python setup.py install

1.2.3 Installing

You will need to add the windows_auth application to the INSTALLED_APPS setting in you Django project settings
file.

INSTALLED_APPS = [
...
'windows_auth',
...

]

This will allow to execute the createwebconfig command, add the new model LDAPUer and register it’s Django
Admin page.

Next, you will need to run the migrate management command to create the new SQL table of the new models.:

$ py manage.py migrate windows_auth

Note: This will perform migrations only for windows_auth app. If you have other migrations pending, you may want
to omit the windows_auth argument to perform all available migrations.

1.2.4 Configure

In order to receive correctly the authenticated user from the IIS Windows Authentication, you will need to add a
middleware called RemoteUserMiddleware. This middleware must be after AuthenticationMiddleware, that is
usually provided by default with Django’s startproject template.

MIDDLEWARE = [
...
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.auth.middleware.RemoteUserMiddleware',
'windows_auth.middleware.UserSyncMiddleware',
...

]

To process the information passed from the IIS Windows Authentication and translate it into a Django User, you will
need to specify the WindowsAuthBackend authentication backend.

1.2. Installation and Setup 5

django-windowsauth

AUTHENTICATION_BACKENDS = [
'windows_auth.backends.WindowsAuthBackend',
'django.contrib.auth.backends.ModelBackend',

]

Note: Be aware, this configuration keeps the Django’s default ModelBackend in order to allow for fallback to Django
Native Users. It can be used to authenticate without IIS, when using the runserver management command for
example.

This is usually not advised to configure for Production setups, but only for Development.

See also:
Django documentation about Authenticating using REMOTE_USER https://docs.djangoproject.com/en/3.1/howto/
auth-remote-user/

Next you will need to configure the settings for your Domain to allow for LDAP integration with Active Directory.

WAUTH_DOMAINS = {
"EXAMPLE": { # this is your domain's NetBIOS Name, same as in "EXAMPLE\\username"␣

→˓login scheme
"SERVER": "example.local", # the FQDN of the DC server, usually is the FQDN of␣

→˓the domain itself
"SEARCH_BASE": "DC=example,DC=local", # the default Search Base to use when␣

→˓searching
"USERNAME": "EXAMPLE\\bind_account", # username of the account used to␣

→˓authenticate your Django project to Active Directory
"PASSWORD": "<super secret>", # password for the binding account

}
}

See also:
About LDAP Search Base: https://docs.microsoft.com/en-us/windows/win32/ad/binding-to-a-search-start-point

(optionally) Configure file path and url path settings for your static and media files.

STATIC_URL = '/static/'
STATIC_ROOT = BASE_DIR / "static"

MEDIA_URL = '/media/'
MEDIA_ROOT = BASE_DIR / "media"

You may need to execute $ py manage.py collectstatic management command after modifying the
STATIC_ROOT setting.

See also:
Full how-to guide to Serve Static Files through IIS

6 Chapter 1. Features

https://docs.djangoproject.com/en/3.1/howto/auth-remote-user/
https://docs.djangoproject.com/en/3.1/howto/auth-remote-user/
https://docs.microsoft.com/en-us/windows/win32/ad/binding-to-a-search-start-point

django-windowsauth

1.2.5 Setup Logging

Throughout this whole module, logging is done to logger named wauth. You may handle and configure this logger
through Django’s setting LOGGING.

This can be done by adding the logger like so:

'wauth': {
'handlers': ['console', 'file', 'mail_admins'],
'level': 'INFO',
'propagate': False,

},

Additionally, you may want to configure logging for ldap3. You can add this logger:

'ldap3': {
'handlers': ['console', 'ldap'],
'level': 'DEBUG',
'propagate': False,

}

And make sure to configure ldap3 log type, like this:

from ldap3.utils.log import set_library_log_detail_level, BASIC
set_library_log_detail_level(BASIC)

The lines above can be added in your Django settings file, just after the LOGGING setting. Remember to document about
that in your code!

See also:
More information of that on https://ldap3.readthedocs.io/en/latest/logging.html

For your convenience, those are the handles used in the examples above:

'handlers': {
'console': {

'class': 'logging.StreamHandler',
'level': 'WARNING',

},
'file': {

'level': 'INFO',
'class': 'logging.handlers.RotatingFileHandler',
'maxBytes': 2 ** 20 * 100, # 100MB
'backupCount': 10,
'filename': BASE_DIR / 'logs' / 'debug.log',

},
'ldap': {

'level': 'INFO',
'class': 'logging.handlers.RotatingFileHandler',
'maxBytes': 2 ** 20 * 100, # 100MB
'backupCount': 10,
'filename': BASE_DIR / 'logs' / 'ldap.log',

},
'mail_admins': {

'level': 'ERROR',
(continues on next page)

1.2. Installation and Setup 7

https://ldap3.readthedocs.io/en/latest/logging.html

django-windowsauth

(continued from previous page)

'class': 'django.utils.log.AdminEmailHandler',
'include_html': True,

},
},

Note: You will need to configure settings for sending emails to use the mail_admins handler: https://docs.
djangoproject.com/en/3.1/topics/email/

1.2.6 Publish to IIS

First, we will need to create the web.config files for the IIS Website configuration. This can be done simply by running
the management command::

$ py manage.py createwebconfig -s -m -w

Notice the -s and -m switches, those are to add configurations for Serving Static Files though IIS. You may want to
omit those switches if you are not planning to serve static files though IIS.

The -w parameter configures IIS’s Windows Authentication and disables Anonymous Authentication in the
web.config file. You may want to change those settings manually to avoid unlocking those configuration sections.
See also:
Reference for createwebconfig at Management Commands

Next you will need to create a new IIS Website for your Django Project.

1. Open IIS Manager
2. Right-click over sites
3. Click Add website. . .
4. Give a name for your site (should use the same as for your Django project)

5. Specify Physical path for the root of your Django project folder (where the manage.py is)

6. Provide binding information as needed (can be changed later)

Congratulation, now you should be able to browse to your new website!
Next are some things to setup and verify before publishing to production. . .

1.3 Deployment Checklist

Before deploying your site to production it is important to go over some best practices and make sure your site is the
most stable and secure. Provided here are some best practices related to django-windowsauth, IIS and LDAP.

See also:
Check out Django’s deployment checklist too.

1. Turn DEBUG off. Make sure to never get it active on a production setup.

2. Store your secrets in a secure location. Here is a tutorial about Managing Secrets.

8 Chapter 1. Features

https://docs.djangoproject.com/en/3.1/topics/email/
https://docs.djangoproject.com/en/3.1/topics/email/
https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/

django-windowsauth

3. Use a proper cache backend, and use WAUATH_USE_CACHE for better performance. More about Django’s cache
framework

4. Use a production ready database backend, not SQLite. django-mssql-backend is a great backend for Microsoft
SQL Server.

5. Configure ALLOWED_HOSTS and CSRF_TRUSTED_ORIGINS to exactly same as your IIS Bindings.
6. Setup Django logging and Admin Error Reporting for your project. See more https://docs.djangoproject.com/

en/3.1/topics/logging/.

7. Enable and configure IIS Logging.

8. Keep your site files on a separate drive from the OS. Consider doing the same for logs and media.

9. Minimize to bare minimum permissions for the web.config files throughout your site.

10. Configure HTTPS bindings for your website with a CA signed certificate.

11. Use only HTTPS for your site, and configure HTTPS redirection with IIR Rewrite. Check out the --https flag
for the createwebconfig command.

12. Use only IIS Windows Authentication when possible.

13. Protect your Django view using @login_required decorator and other authorization logics.

14. Use SSL and NTLM or Kerberos authentication for your LDAP connection. See Securing LDAP Connections.

15. Minimize the SESSION_COOKIE_AGE time and enable SESSION_EXPIRE_AT_BROWSER_CLOSE when using
Windows Authentication as SSO. We recommend using 86400, 1 day in seconds.

16. Customize Error Pages for a better user experience.

17. Configure recycling times for your Application Pool at the least used time of the day.

18. Consider increasing the Maximum Worker Processes in your Application Pool to accommodate for heavy loads.

19. Setup Request Filtering to your site to limit unintended file access. You should deny access to “.py” and “.config”
file extensions.

20. Enable dynamic IP restrictions based of requests/ms.

See also:
Some more great best practices for IIS are available at https://techcommunity.microsoft.com/t5/
core-infrastructure-and-security/iis-best-practices/ba-p/1241577

1.4 Migration

1.4.1 From existing project

This is a very quick how-to for integrating django-windowsauth into existing Django projects.

First of all you will need to check your Django User’s username field. In case it already matches their Active Directory
logon name, you are good to go.

If that is not the case, you will probably need to change that. The process can look like:

1. Export the Django user table from your DB, and load it to excel.

2. Export the Active Directory Users to excel.

3. Merge tables via excel.

1.4. Migration 9

https://docs.djangoproject.com/en/3.1/topics/cache/
https://docs.djangoproject.com/en/3.1/topics/cache/
https://github.com/ESSolutions/django-mssql-backend
https://docs.djangoproject.com/en/3.1/topics/logging/
https://docs.djangoproject.com/en/3.1/topics/logging/
https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/iis-best-practices/ba-p/1241577
https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/iis-best-practices/ba-p/1241577

django-windowsauth

4. Import new user table into you your Django users table in your DB.

Next, you will need to manually create a LDAPUser model entry for each relevant user. This can be done via Django’s
shell:

$ py manage.py shell

>>> from django.contrib.auth.models import User
>>> from windows_auth.models import LDAPUser
>>> users = User.objects.filter().all()
>>> LDAPUser.objects.bulk_create(LDAPUser(domain="EXAMPLE", user=user) for user in users)

You may want to modify the user queryset to create LDAP Relations only for specific users. In case you are using a
different Django User Model, you will need to use it instead of the Django User or use get_user_model() method.

At this point, when a user first visit your site after migration, it will be synchronized against LDAP. In case you would
still want to also migrate all users now, you can do this via Django’s shell like so:

>>> from windows_auth.models import LDAPUser
>>> for user in LDAPUsers.objects.all():
>>> user.sync()

1.4.2 To 1.4.0

• (optional) Remove duplicated groups between SUPERUSER_GROUPS, STAFF_GROUPS and ACTIVE_GROUPS ldap
settings, or set PROPAGATE_GROUPS to False.

1.4.3 To 1.3.0

No required changes for migration is needed.

1.4.4 To 1.2.0

• Add the UserSyncMiddleware to MIDDLEWARE setting like so:

MIDDLEWARE = [
...
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.auth.middleware.RemoteUserMiddleware',
'windows_auth.middleware.UserSyncMiddleware',
...

]

10 Chapter 1. Features

django-windowsauth

1.5 Serve Static Files through IIS

Generally websites have static files such as CSS, JS, Images served to clients beside the primary responses. Those files
are considered as “Static Files” because they can be delivered without being generated, modified or processed.

In Django, static files can be served by the Django Framework itself. This is very convenient during Development, but
is not suitable for Production use.

See also:
About Serving Static Files: https://docs.djangoproject.com/en/3.1/howto/static-files/

For production use, it is advised to let the Web Server to serve the Static Files. This is how it can be done:

Note: This how-to describes serving both Static Files and Media Files. In case you don’t need or use one of those
features, you can just ignore the respective parts in the tutorial.

First you will need to configure the following settings:

STATIC_URL = '/static/'
STATIC_ROOT = BASE_DIR / "static"

MEDIA_URL = '/media/'
MEDIA_ROOT = BASE_DIR / "media"

The STATIC_URL represents the file path over HTTP, while the STATIC_ROOT directs to the Physical path of the files
in the Web Server’s OS. Meanwhile from the IIS point of view, the HTTPS path is derived from the file’s Physical
path location. Although this can be altered using Virtual Directories, it is usually advised not to.

The same applies for the MEDIA_URL and MEDIA_ROOT settings.

Next we will need to create web.config files in each folder to configure IIS to server Static Files.

Note: Any time the STATIC_ROOT setting is changes, you will need to start over from this step.

This can be done by running the createwebconfig management command::

$ py manage.py createwebconfig -s -m

The -s switch is used configure the STATIC_ROOT folder, while -m switch is used to configure the MEDIA_ROOT folder.

Now all we need to do is to collect all the static files from the many Django apps into the STATIC_ROOT folder. This
can be done by running the collectstatic management command::

$ py manage.py collectstatic

See also:
About collectstatic command: https://docs.djangoproject.com/en/3.1/ref/contrib/staticfiles/
#django-admin-collectstatic

At this point, in case you have configured the URL path and Physical path the same, the Web Server should serve all
static files correctly.

In case you have configured different paths, you will probably want to setup Virtual Directories.

1.5. Serve Static Files through IIS 11

https://docs.djangoproject.com/en/3.1/howto/static-files/
https://docs.djangoproject.com/en/3.1/ref/contrib/staticfiles/#django-admin-collectstatic
https://docs.djangoproject.com/en/3.1/ref/contrib/staticfiles/#django-admin-collectstatic

django-windowsauth

This can be useful when you want to store Static and / or Media file outside the Django project’s folder (the website’s
root folder), on a separate disk for example.

To create the Virtual Directories:

1. Open IIS Manager
2. Right-click on your website
3. Click “Add Virtual Directory. . . ”
4. Set the “Alias” for the same value as STATIC_URL setting

5. Set the “Physical Path” for the same value STATIC_ROOT setting

You may do the same with the MEDIA_URL and MEDIA_ROOT settings in order to add Virtual Directory for serving
Media Files.
See also:
Microsoft Docs on IIS Virtual Directories https://docs.microsoft.com/en-us/iis/get-started/
planning-your-iis-architecture/understanding-sites-applications-and-virtual-directories-on-iis#virtual-directories

1.6 Create Task Scheduler Jobs

It is usually necessary to execute tasks from you project on a schedule. This module has a shortcut to create scheduled
jobs for Django management commands in the Windows Task Scheduler.

Warning: This feature requires the installation of the pywin32 module. Install it with pip install pywin32

1.6.1 Create a task

Creating a new task is done with the createtask command.

For example, lets say you want to run the following command every hour:

$ py manage.py say_hello --new-users

You can create a schedule with this command:

$ py manage.py createtask "say_hello --new-users" -i hours=1

Now the following command will be executed every hour by the Windows Task Scheduler.

1.6.2 Using predefined tasks

Included with this module are some predefined tasks for some Django and Third-Party app management commands.
Those commands can be created using the --predefined or -p argument

clearsessions Clear expired sessions from database, once a week:

$ py manage.py createtask clearsessions -p

See also:
See more at https://docs.djangoproject.com/en/3.1/ref/django-admin/#django-admin-clearsessions

12 Chapter 1. Features

https://docs.microsoft.com/en-us/iis/get-started/planning-your-iis-architecture/understanding-sites-applications-and-virtual-directories-on-iis#virtual-directories
https://docs.microsoft.com/en-us/iis/get-started/planning-your-iis-architecture/understanding-sites-applications-and-virtual-directories-on-iis#virtual-directories
https://docs.djangoproject.com/en/3.1/ref/django-admin/#django-admin-clearsessions

django-windowsauth

clean_duplicate_history Clean duplicate history records from all models with history every 3 hours (from
django-simple-history):

$ py manage.py createtask clean_duplicate_history -p

clean_old_history Clean history records older then 30 days from all models with history every day (from
django-simple-history):

$ py manage.py createtask clean_old_history -p

See also:
See more at https://django-simple-history.readthedocs.io/en/latest/utils.html#utils

process_tasks Worker for background tasks processing (from django-background-tasks):

$ py manage.py createtask process_tasks -p

You can also create multiple workers by specifying different names with --name argument.

See also:
See more at https://django-background-tasks.readthedocs.io/en/latest/#running-tasks

1.7 Using Custom User Model Mappings

Sometimes it is useful to modify the default Django User Model, to change field settings or to add extra fields. When
doing so, you may want to customize the LDAP synchronization to accommodate for the extra fields and changes.

For the sake of this tutorial, we will use the following custom User model as an example:

class CustomUser(AbstractBaseUser):
telephone = models.CharField(max_length=32)
country_code = models.PositiveSmallIntegerField()

job_title = models.CharField(max_length=64)
department = models.CharField(max_length=64)

REQUIRED_FIELDS = ("telephone", "job_title", "department")

Usually the first thing to do is to change the USER_FIELD_MAP in the LDAP Setting for all domains.

You can configure it for each domain, for example:

WAUTH_DOMAINS = {
"EXAMPLE": {

"SERVER": "example.local",
"SEARCH_BASE": "DC=example,DC=local",
"USERNAME": EXAMPLE\\bind_account",
"PASSWORD": "<super secret>",
"USER_FILED_MAP": {

"username": "sAMAccountName",
"first_name": "givenName",
"last_name": "sn",
"email": "mail",

(continues on next page)

1.7. Using Custom User Model Mappings 13

https://django-simple-history.readthedocs.io/en/latest/utils.html#utils
https://django-background-tasks.readthedocs.io/en/latest/#running-tasks

django-windowsauth

(continued from previous page)

"telephone": "telephoneNumber",
"country_code": "countryCode",
"job_title": "title",
"department": "department",

}
},

}

Or create a custom LDAP Settings with your defaults:

@dataclass()
class MyLDAPSettings(LDAPSettings):

USER_FIELD_MAP = {
"username": "sAMAccountName",
"first_name": "givenName",
"last_name": "sn",
"email": "mail",

"telephone": "telephoneNumber",
"country_code": "countryCode",
"job_title": "title",
"department": "department",

}

WAUTH_DOMAINS = {
"EXAMPLE": MyLDAPSettings(

SERVER="example.local",
SEARCH_BASE="DC=example,DC=local",
USERNAME="EXAMPLE\\bind_account",
PASSWORD="<super secret>",

),
}

See also:
Reference for USER_FIELD_MAP LDAP Setting at LDAP Settings

1.8 Using LDAP in your code

In addition to just windows authentication and IIS integration, this module provide you with an easy to use LDAP
connection interface.

Throughout your code, you can use the get_ldap_manager function to receive an LDAPManager manager object fora
specified domain. For example:

from windows_auth.ldap import get_ldap_manager

manager = get_ldap_manager("EXAMPLE")
manager.connection

With the manager, you can access the ldap3 Connection object, perform LDAP operations like search, add, modify,
etc.

14 Chapter 1. Features

django-windowsauth

Also, you can use the ldap3 Abstraction Layer for a simple python interface. This is how you can use it to query all
Active Directory Computer objects:

reader = manager.get_reader("computer")
reader.search("name")

And even write to LDAP, like this:

from ldap3 import Writer

writer = Writer.from_cursor(reader)
computer = writer.match("name", "test_computer")[0]
computer.description = "Hello world!"
writer.commit()

Note: For Security reasons, the LDAP connections are read-only by default. In order to write to LDAP, you will need
to configure READ_ONLY=False in the LDAP Settings of each desired domain.

1.8.1 Advice for Model - LDAP relations

Sometimes it is useful to relate a Django Model object to an LDAP object. When doing so, you can easily implement
synchronization, and enable easy access for LDAP operation on that object. If you plan to do such thing, here are
some tips for you:

Store the LDAP Domain in which the object is from, either as a class-level const, or a Model Field. You may want
to event implement a get_ldap_manager method get the manager for the respective domain.

class Computer(models.Model):
as a const
DOMAIN = "EXAMPLE"

as a field
domain: str = models.CharField(max_length=128)

using a method
def get_ldap_manager(self) -> LDAPManager:

return get_ldap_manager(self.domain)

Then implement a method to receive the exact entry for the related LDAP object.

class Computer(models.Model):
...
name: str = models.CharField(max_length=128)

def get_ldap_computer(self, attributes: Optional[Iterable[str]] = None) -> Entry:
manager = self.get_ldap_manager()
reader = manager.get_reader("computer", f"name: {self.name}", attributes)
return reader.search()[0]

1.8. Using LDAP in your code 15

django-windowsauth

1.9 Managing Secrets

This tutorial is still in the process of writing. . .

1.10 Securing LDAP Connections

When using your project with a production LDAP server, you should always use a secure connection. The LDAP
connections probably will include sensitive information from your domain, like the credentials of the service account
that is begin used by your Django Project, user information of the users on your site and any other custom uses of LDAP
in your code.

Securing the connection to your LDAP is somewhat easy, yet still requires some prerequisites and configurations. Here
you will be informed of some practices you can do to better secure your LDAP connections.

Note:
The information provided herein is intended to provide helpful and informative material as it is related to security
equipment and services.
It is not intended to be taken as legal, accounting, investment, or other professional advice.
If you require personal assistance or advice, be sure to consult with a competent professional.
We disclaim any responsibility for any liability, loss or risk, personal or otherwise, which is incurred as a
consequence, directly or indirectly, of the use and application of any answers provided here or in any of our material.

1.10.1 Using SSL/TLS

SSL/TLS use certificates to establish a secure connection between you and the LDAP service before any data is ex-
changed. This practice is called LDAPs, and refers for LDAP over TLS or LDAP over SSL.

To use LDAPs, it needs to be enabled on the LDAP service side. Each LDAP service has a different setup required to
enable LDAPs, you can search docs for your case.

For Active Directory administrators, here is a great guide to enable it for testing: https://techexpert.tips/windows/
enabling-the-active-directory-ldap-over-ssl-feature/

Once you have enabled LDAPs on the server, you just need to configure the LDAP Setting USE_SSL to True.

WAUTH_DOMAINS = {
"EXAMPLE": LDAPSettings(

SERVER="example.local",
SEARCH_BASE="DC=example,DC=local",
USERNAME="EXAMPLE\\bind_account",
PASSWORD="<super secret>",
USE_SSL=True,

),
}

Warning: This module uses LDAPs by default to provide an easier setup. In case your LDAP servers are not
capable of LDAPs, you should configure the LDAP setting USE_SSL to False.

16 Chapter 1. Features

https://techexpert.tips/windows/enabling-the-active-directory-ldap-over-ssl-feature/
https://techexpert.tips/windows/enabling-the-active-directory-ldap-over-ssl-feature/

django-windowsauth

1.10.2 Using NTLM Authentication

NTLM is a protocol used to securely exchange credential information between the client and the server. It is done by
hashing the password with a random generated number provided by the server before sending.

NTLM was originally created by Microsoft to be used in the Windows ecosystem. It is still in use today, yet it is
considered outdated, and has been mainly replaced with Kerberos.

See also:
See more detailed explanation about NTLM

To enable NTLM authentication, you can specify connection’s authentication options in the CONNECTION_OPTIONS
LDAP setting.

WAUTH_DOMAINS = {
"EXAMPLE": LDAPSettings(

SERVER="example.local",
SEARCH_BASE="DC=example,DC=local",
USERNAME="EXAMPLE\\bind_account",
PASSWORD="<super secret>",
USE_SSL=True,
CONNECTION_OPTIONS={

"authentication": ldap3.NTLM,
},

),
}

See also:
NTLM authentication on ldap3 docs https://ldap3.readthedocs.io/en/latest/bind.html#ntlm

1.10.3 Using Kerberos (SASL)

Kerberos is an authentication and authorization protocol designed by MIT in the late ’80s. Today, kerberos is the gold
standard authentication and authorization protocol used throughout Windows and other OSs. It uses tickets to represent
the authenticated user and to authorize it to access desired services.

See also:
Learn more about Kerberos at https://www.simplilearn.com/what-is-kerberos-article

When using kerberos authentication, the credentials given to the LDAP server is the account’s kerberos token accessed
from the MIT Token Manager. Therefore, the account running your Django Project will be used when accessing LDAP
servers, and no username or password needs to be provided.

In order to use the ldap3 SASL authentication with the KERBEROS mechanism, you will need to install the gssapi
package. To install it you first need to install the MIT Kerberos on the server.

Go to https://web.mit.edu/KERBEROS/dist/ and download the latest MIT Kerberos for Windows as 64-bit MSI In-
staller, and install it on the server. Restart will be required after installation is done.

After the restart, edit the C:\ProgramData\MIT\Kerberos5\krb5.ini and provide the default_realm setting.
For example:

[libdefaults]
default_realm = EXAMPLE.LOCAL

1.10. Securing LDAP Connections 17

https://www.ionos.com/digitalguide/server/know-how/ntlm-nt-lan-manager/#:~:text=NTLM%20is%20a%20collection%20of,servers%20to%20conduct%20mutual%20authentication.
https://ldap3.readthedocs.io/en/latest/bind.html#ntlm
https://www.simplilearn.com/what-is-kerberos-article
https://web.mit.edu/KERBEROS/dist/

django-windowsauth

See also:
More about the krb5.ini config file https://web.mit.edu/kerberos/www/krb5-latest/doc/admin/conf_files/krb5_conf.
html

Then, install the gssapi package in your virtualenv:

$ pip install gssapi

Then configure your LDAP connections to use the SASL authentication with KERBEROS mechanism like so:

WAUTH_DOMAINS = {
"EXAMPLE": LDAPSettings(

SERVER="example.local",
SEARCH_BASE="DC=example,DC=local",
USERNAME="",
PASSWORD="",
USE_SSL=True,
CONNECTION_OPTIONS={

"authentication": ldap3.SASL,
"sasl_mechanism": ldap3.KERBEROS,

}
),

}

Now you need to get the ticket for that account configured though MIT Token Manager.

Note: Notice the username and password kept as empty strings as they are not necessary in this setup.

1.10.4 Optimize your code

Securing the LDAP connection in at the protocol level is good, but do not let it deceive you. It is very important to
restrict any unintended operation on the LDAP server, especially write operations.

Minimize the permissions and delegations of the bind account to the bare minimum possible. You can never know
how and what could be done through vulnerabilities in your code.

Never ever write user password or other credentials explicitly inside your code. Use instead another way to store
your secrets in a protected place. See the tutorial about Managing Secrets

Use ``Reader`` and ``Writer`` cursors from ldap3’s abstraction module. Using them can help you to avoid unwanted
behaviors by simplifying the interface.

Restrict access to views performing LDAP operations. Allow only authenticated users, and implement permission
check to avoid compromising your views.

Use read-only connection when possible. By default, LDAP connections are made read-only. It restricts the execution
of write operations at the client level.

In case you need to perform write operations, you will need to explicitly disable read-only. When doing so, consider
creating a dedicated connection for writing, with a different bind account with the minimal permissions. This can
be done by adding another domain to WAUTH_DOMAINS setting for the same domain, but with different account and
read-only disabled.

18 Chapter 1. Features

https://web.mit.edu/kerberos/www/krb5-latest/doc/admin/conf_files/krb5_conf.html
https://web.mit.edu/kerberos/www/krb5-latest/doc/admin/conf_files/krb5_conf.html

django-windowsauth

1.11 Customize Error Pages

This tutorial is still in the process of writing. . .

1.12 Debug with django-debug-toolbar

When using LDAP throughout your project, it is useful to see what operations did perform on the server side. This can
be done using the django-debug-toolbar with the LDAP Panel` provided with this module.

This panel shows you the metrics for each domain (if you have configured them to collect metrics), and every operation
the server perform against the LDAP server, including the LDAP filter and every each entry it responded with.

1.12.1 Installation

In order to view the LDAP Panel to the debug toolbar, you will need to install the django-debug-toolbar package:

$ pip install django-debug-toolbar

And follow the installation guide on django-debug-toolbar docs https://django-debug-toolbar.readthedocs.io/en/
latest/installation.html

Then to add the LDAP Panel, insert it to the DEBUG_TOOLBAR_PANELS setting like so:

DEBUG_TOOLBAR_PANELS = [
...
'windows_auth.panels.LDAPPanel',
...

]

To enable all of the LDAP Panel feature, you may want to enable metrics collection for all your domains:

WAUTH_DOMAINS = {
"EXAMPLE1": LDAPSettings(

SERVER="example.local",
SEARCH_BASE="DC=example,DC=local",
USERNAME="EXAMPLE\\bind_account",
PASSWORD="<super secret>",
COLLECT_METRICS=True,

),
"EXAMPLE2": {

"SERVER": "example.local",
"SEARCH_BASE": "DC=example,DC=local",
"USERNAME": "EXAMPLE\\bind_account",
"PASSWORD": "<super secret>",
"COLLECT_METRICS": True,

},
}

1.11. Customize Error Pages 19

https://django-debug-toolbar.readthedocs.io/en/latest/installation.html
https://django-debug-toolbar.readthedocs.io/en/latest/installation.html
https://django-debug-toolbar.readthedocs.io/en/latest/configuration.html#debug-toolbar-panels

django-windowsauth

1.13 Collect Metrics

Sometimes collecting metrics and usage data can be very helpful in detecting mistakes and problems. Using ldap3
Connection Metrics system, you are able to get an inside look about the connections.

1.13.1 Installation

First, you will need to add the ldap_metrics app to the INSTALLED_APPS setting:

INSTALLED_APPS = [
...
'windows_auth',
'windows_auth.ldap_metrics',
...

]

Next you will need to migrate to create the LDAP Usage table:

$ py manage.py migrate ldap_metrics

1.13.2 Usage

In order to start collecting usage metrics, you will configure the COLLECT_METRICS LDAP Setting for each domain.
For example:

WAUTH_DOMAINS = {
"EXAMPLE": LDAPSettings(

SERVER="example.local",
SEARCH_BASE="DC=example,DC=local",
USERNAME="EXAMPLE\\bind_account",
PASSWORD="*********",
COLLECT_METRICS=True,

),
}

Now, every time a Django process exists, the LDAP Connection usage metrics will be saved. The connection metrics
can be viewed in your Django project’s admin site.

Note: In case you want to collect metrics only when developing, you can set this setting to DEBUG.

20 Chapter 1. Features

django-windowsauth

1.14 Settings

1.14.1 WAUTH_USE_SPN

Type bool; Default to False; Not Required.
Expect the REMOTE_USER header value to be in Windows SPN username scheme.

By default, IIS will present the authenticated user by it’s Down-Level Logon Name, for example “EXAM-
PLE\username”. Setting this value to True will will expect the authenticated user to be presented by it’s User Principal
Name, for example “username@example.local”.

Note: When using SPN the domain of the authenticated user will be detected by the Domain’s FQDN instead of it’s
NetBIOS Name!

This means that you will need to configure WAUTH_DOMAINS by created with the FQDN of their domain, and not their
NetBIOS Name. This is also means all new LDAPUser domain values will be FQDNs and not NetBIOS Names

If you are planning to migrate between using Down-Level to SPN, first of all don’t. In case you still need to switch
between them, you can either manually replace the LDAPUser’s domain values from the old NetBIOS Names to the
new FQDNs, or just delete all LDAPUsers and let them be created again when a user login again after change.

1.14.2 WAUTH_DOMAINS (Required)

Type dict; Default to None; Required.
LDAP Settings for each domain.

Dictionary of domain NetBIOS Names and their settings for LDAP connection. Domain LDAP Settings can be written
as a dictionary with the settings in UPPERCASE and their values, or as an LDAPSettings object.

A default domain settings can be used as a fallback settings for requested domains that are missing from
WAUTH_DOMAINS by using “__default__” as the domain name. When using only the default domain settings, you
may want to specify manually the WAUTH_PRELOAD_DOMAINS setting.

Each of the domain settings can be configured as a function that will be used as callback when accessing the setting
and be called with the domain as it first argument. This can be used with lambda functions for lazy setting values.

See also:
More information about domain LDAP Settings can be found at LDAP Settings reference.

1.14.3 WAUTH_RESYNC_DELTA

Type timedelta, str, int or None; Default to timedelta(days=1); Not Required.
Minimum time (seconds) until automatic re-sync user’s fields and permissions against LDAP.

Configure when to automatically synchronize the user’s fields and groups (and permissions) against Active Di-
rectory via LDAP. On each request the user makes, if the user haven’t synchronized in the time specified, the
WindowsAuthBackend attempt to perform synchronization again on the user. This is used to make sure the user
permissions and properties match those in Active Directory.

1.14. Settings 21

https://docs.microsoft.com/en-us/windows/win32/secauthn/user-name-formats#down-level-logon-name
https://docs.microsoft.com/en-us/windows/win32/secauthn/user-name-formats#user-principal-name
https://docs.microsoft.com/en-us/windows/win32/secauthn/user-name-formats#user-principal-name
mailto:username@example.local

django-windowsauth

The value is used as number of seconds in int, str or any other object that can be casted to int. The value can also
be a django.utils.timezone.timedelta object.

In case you need to synchronize the user on every request, you can configure the setting to 0.
To disable automatic synchronizations via LDAP, you can remove the UserSyncMiddleware or configure the setting
to None or False.

Note: Synchronizing user via LDAP can delay the Request / Response processing by only few ms, but your experience
may vary. You can debug your setup using Debug with django-debug-toolbar.

1.14.4 WAUTH_USE_CACHE

Type boot; Default to DEBUG, otherwise False; Not Required.
Use cache backend instead of DB for determining user re-sync.

When using user automatic synchronization, the check whether user requires a re-sync is verified against the LDAPUser
model and it requires an SQL Query.

To avoid this query and allow for better performance, this setting can allow you to use Django’s cache framework
instead of the default model verification against the DB. This will require you to setup your cache backend in setting
CACHES.

In production, it is advised to use the cache setting instead of the default model based verification.

1.14.5 WAUTH_REQUIRE_RESYNC

Type boot; Default to False; Not Required.
Raise exception and return Error 500 when user failed to synced to domain.

When using user automatic synchronization, propagate any exception raised during synchronization. This will result
with the user receiving a Error 500 when they fail to synchronize properly.

This is useful for security sake, when requiring users to have the most updated fields and permissions. While devel-
oping in debug, it is usually useful to receive information about the synchronization exception.

In any case, the synchronization exception will be logged as error with the exception information included. If you have
setup logging and email reporting for server admins, you can also receive the exception details by email.

Note: You can configure this per view with the ldap_sync_required decorator. See the reference at View Decorators

22 Chapter 1. Features

https://docs.djangoproject.com/en/3.1/topics/cache/

django-windowsauth

1.14.6 WAUTH_ERROR_RESPONSE

Type int or Callable; Default to None; Not Required.
Configure custom HTTP Response for Errors while User automatic LDAP Synchronization.

When a user synchronization fails, you can define a custom HTTP Response to send to clients.

This can be configured as a int, it is used as the Response Code for response with the default text Authorization
Failed. This also can be a function that receive the request and exception as first and second arguments, and
returning a Django HttpResponse object.

When configured to None the exception is propagated, and usually results in a Error 500 for clients.

Note: This setting is only relevant when WAUTH_REQUIRE_SYNC is set to True, otherwise the exception will be
ignored.

1.14.7 WAUTH_LOWERCASE_USERNAME

Type boot; Default to True; Not Required.
Lowercase the username to mimic non-case sensitive LDAP backends like Active Directory.

Windows systems, like Active Directory are non-case sensitive. While python, Django, and most Databases are case
sensitive, you can lower case every username to mimic the non-case sensitive behavior of the Windows system.

1.14.8 WAUTH_IGNORE_SETTING_WARNINGS

Type boot; Default to True; Not Required.
Skip verification of domain settings on server startup.

By default, on every startup of you Django project the settings are validated.

This setting can be used to ignore the warnings raised by detecting users with domains missing from settings in
WAUTH_DOMAINS, and Unknown Settings detected in domain LDAP Settings.

1.14.9 WAUTH_PRELOAD_DOMAINS

Type tuple or bool; Default to None; Not Required.
List of domains to preload and connect during Django project startup

LDAP Connections are cached in process memory to retain connections for multiple request / response cycles. This
setting lists the domains to preload, connection and bind during you Django project startup. This way, the first request
for a process will not have wait extra time for the LDAP connection to load and connect.

When the setting is configured to None or True, all the domains configured in WAUTH_DOMAINS settings are preloaded.
In case you use only the default domain settings in the WAUTH_DOMAINS setting, it is advised to manually configure
this setting to preload the relevant domains.

To enable LDAP Connection lazy loading, you can set this setting to False.

1.14. Settings 23

django-windowsauth

Note: When using runserver command, due to the server first validating models before loading the project, it may
seam like multiple connections get initiated for the same domains.

By setting this setting, it may cause multiple LDAP connections to be established and terminate quickly for each
domain.

You should not be warned by this behavior as this is behaves like a quick connection test to your LDAP server, and
this is should only happened during development phase. In case you would like to avoid this behavior anyway, you
can use the runserver --noreload parameter, or modifying the WAUTH_PRELOAD_DOMAINS setting to False when
debugging.

1.14.10 WAUTH_SIMULATE_USER

Type str; Default to ""; Not Required.
Impersonated user used by SimulateWindowsAuthMiddleware

Username described in Credential Manager API Down-Level scheme, or SPN when WAUTH_SPN=True (e.g. EXAMPLE\
username / username@example.com).

1.15 LDAP Settings

LDAP Settings are the settings used to configure LDAP connection to domains. They are configured inside the
WAUTH_DOMAINS setting of your Django project settings file, as the value for each domain key.

1.15.1 Configuring

LDAP Settings can be represented as a regular Python Dictionary, like this:

WAUTH_DOMAINS = {
"EXAMPLE": {

"SERVER": "example.local",
"SEARCH_BASE": "DC=example,DC=local",
"USERNAME": "EXAMPLE\\bind_account",
"PASSWORD": "*********",

}
}

Or as an LDAPSettings object, like this:

WAUTH_DOMAINS = {
"EXAMPLE": LDAPSettings(

SERVER="example.local",
SEARCH_BASE="DC=example,DC=local",
USERNAME="EXAMPLE\\bind_account",
PASSWORD="*********",

),
}

24 Chapter 1. Features

django-windowsauth

When using a Python Dictionary, each setting can be configured to a callback function that will be called with the
specified domain as first and only argument. For example:

WAUTH_DOMAINS = {
"EXAMPLE": {

"USERNAME": lambda domain: f"{domain}\\bind_account",
}

}

1.15.2 Using defaults

Sometimes when using multiple domains it is easier to configure settings globally or to specify defaults for unantici-
pated domains.

When configuring LDAP Settings as a Python Dictionary, this can be done by using the "__default__" key in
WAUTH_DOMAINS settings. Every setting configured in the "__default__", and are not configured explicitly for the
domain, in will propagate. For example:

WAUTH_DOMAINS = {
"__default__": {

"USE_SSL": True,
},
"EXAMPLE1": {

"SERVER": "example.local",
"SEARCH_BASE": "DC=example,DC=local",
"USERNAME": "EXAMPLE\\bind_account",
"PASSWORD": "*********",
"USE_SSL": False,

},
"EXAMPLE2": {

"SERVER": "example.local",
"SEARCH_BASE": "DC=example,DC=local",
"USERNAME": "EXAMPLE\\bind_account",
"PASSWORD": "*********",

}
}

In this case, EXAMPLE1 will have USE_SSL = False and EXAMPLE2 will have USE_SSL = True.

When using LDAPSettings objects, this can be done by inheriting and creating a custom LDAPSettings class. For
example:

@dataclass()
class MyLDAPSettings(LDAPSettings):

USE_SSL: bool = False

WAUTH_DOMAINS = {
"EXAMPLE": MyLDAPSettings(

SERVER="example.local",
SEARCH_BASE="DC=example,DC=local",
USERNAME="EXAMPLE\\bind_account",
PASSWORD="*********",

(continues on next page)

1.15. LDAP Settings 25

django-windowsauth

(continued from previous page)

),
}

1.15.3 Extending LDAP Settings

Sometimes it is useful to have some extra LDAP Settings for use with the LDAP Manager.

It is possible to create a custom LDAPSettings class and use it to configure the LDAP Settings for domains. Those
extra setting will be available in the settings attribute of LDAPManager objects, and can be used throughout your
code. Those settings should not affect the existing settings used by django-windowsauth for User synchronization
or any other uses.

Custom LDAP Settings objects can be created by inheriting from the LDAPSettings dataclass, like so:

@dataclass()
class MyLDAPSettings(LDAPSettings):

EXTRA_SETTING: str = "Hello, world!"

WAUTH_DOMAINS = {
"EXAMPLE": MyLDAPSettings(

SERVER="example.local",
SEARCH_BASE="DC=example,DC=local",
USERNAME="EXAMPLE\\bind_account",
PASSWORD="*********",

),
}

Then the setting could be accessed from LDAPManager object:

>>> from windows_auth.ldap import get_ldap_manager
>>> manager = get_ldap_manager("EXAMPLE")
>>> manager.settings.EXTRA_SETTING
"Hello, world!"

1.15.4 Base Settings

SERVER

Type bool; Required.
FQDN, IP, or URL of the LDAP Server.

The Fully Qualified Domain Name, IP Address or complete URL in the scheme scheme://hostname:hostport of
the LDAP Server. This setting will be used as host property for ldap3’s Server object.

When using Active Directory, this address should direct to a DC Server (Domain Controller) for the domain. By default,
the FQDN of the domain itself will be resolved into your current configured DC Server. That way, in case you have
multiple DC servers in your domain, you will be dynamically changing the server you are accessing.

26 Chapter 1. Features

https://ldap3.readthedocs.io/en/latest/server.html

django-windowsauth

See also:
From the Microsoft Docs https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/plan/
domain-controller-location

USERNAME

Type str; Required.
The account to be used when binding to the LDAP Server.

The username in one of the Credentials Manager API’s formats (Down-Level or SPN) of a user with the permissions
needed for your application. By default, read-only permissions for the user accounts that are able to authenticate via
IIS Windows Authentication to your website is needed.

If you are planing to use NTLM authentication to your LDAP Server, the username must be in the Down-Level Logon
Name format (DOMAIN\username).

In production, it is advised to use a dedicated Service Account to authorize your application in your Active Directory
domain.

PASSWORD

Type str; Required.
Password of the user to be used when binding to the LDAP Server.

The password for the user used to authenticate to the LDAP Server.

Warning: It is highly advised not to store sensitive secrets like password in your code. You should use a safe and
secure place to store the password. See the tutorial manage_secrets

SEARCH_BASE

Type str; Required.
The DN of the container used as starting point for LDAP searches.

When querying LDAP Directories, it is required to specify the root container to start the search from. Then, depending
on the search scope, the objects are searched directly or indirectly in respect to the search base container.

For searches throughout all the domain’s containers, the search base DN is usually in the format DC=<domain name>,
DC=<parent domain>.

See also:
Microsoft docs about search bases https://docs.microsoft.com/en-us/windows/win32/ad/
binding-to-a-search-start-point

1.15. LDAP Settings 27

https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/plan/domain-controller-location
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/plan/domain-controller-location
https://docs.microsoft.com/en-us/windows/win32/secauthn/user-name-formats#user-principal-name
https://docs.microsoft.com/en-us/windows/win32/ad/binding-to-a-search-start-point
https://docs.microsoft.com/en-us/windows/win32/ad/binding-to-a-search-start-point

django-windowsauth

USE_SSL

Type bool; Default to True; Not Required.
Connect to LDAP over secure port, usually 636.

This setting is used as the use_ssl parameter for the ldap3 Server object.

See also:
ldap3 Server object docs https://ldap3.readthedocs.io/en/latest/server.html

READ_ONLY

Type bool; Default to True; Not Required.
Prevent modify, delete, add and modifyDn (move) operations.

Connect to the LDAP Server with a read only protection. This can farther minimize risks and vulnerabilities from
unwanted operations against the LDAP Server.

This setting is used as the read_only parameter for the ldap3 Connection object.

Warning: This is not guaranteed to be a risk / vulnerabilities free connection, make sure to minimize the bind
account’s permissions

COLLECT_METRICS

Type bool; Default to True; Not Required.
Collecting connection usage metrics.

Enabling ldap3’s Connection Metrics collection. Those usage metrics can be accessed via manager.get_usage()
method.

Connection metrics can be saved automatically, see how to Collect Metrics

See also:
ldap3 documentation https://ldap3.readthedocs.io/en/latest/metrics.html

SERVER_OPTIONS

Type dict; Default to {}; Not Required.
Extra parameters for the ldap3 Server object.

A dictionary of extra keyword arguments to pass when creating the ldap3 Server object.

See also:
For more information, see ldap3 docs https://ldap3.readthedocs.io/en/latest/server.html

28 Chapter 1. Features

https://ldap3.readthedocs.io/en/latest/server.html
https://ldap3.readthedocs.io/en/latest/metrics.html
https://ldap3.readthedocs.io/en/latest/server.html

django-windowsauth

CONNECTION_OPTIONS

Type dict; Default to {}; Not Required.
Extra parameters for the ldap3 Connection object.

A dictionary of extra keyword arguments to pass when creating the ldap3 Connection object.

See also:
For more information, see ldap3 docs https://ldap3.readthedocs.io/en/latest/connection.html

PRELOAD_DEFINITIONS

Type tuple; Default is shown below; Not Required.
Preload LDAP schema for defining LDAP objects in Python.

A list of LDAP Object definitions to preload while connecting to the LDAP Server. This caches ldap3 ObjectDef
objects on the LDAPManager object for each defined object class. The object definitions are later get used for parsing
the objects received from querying the LDAP Directory. Preloading the object definitions can minimize the extra
delay for first query for an object.

The definitions can be listed as a simple string referring to an LDAP object class, or a 2 valued tuple with the LDAP
object class string on the first value, and a list of extra attributes on the second value. For example:

{
"PRELOAD_DEFINITIONS": (

("user", ["sAMAccountName"]),
"group"

),
}

The configuration above is the actual default configuration for this setting.

USER_FIELD_MAP

Type dict; Default is shown below; Not Required.
Translate User Model fields to LDAP User object attributes.

Provide a mapping for your Django User Model fields to the LDAP User object attributes. Those mappings are used
when synchronizing Django Users to their related LDAP Users.

In case you using a Custom User Model in your Django project, you also will be able to map them to LDAP Attributes.
This is mentioned in the tutorial Using Custom User Model Mappings.

Note: Make sure to specify the needed attributes when preloading definitions for non-default attributes.

{
"USER_FIELD_MAP": {

"username": "sAMAccountName",
(continues on next page)

1.15. LDAP Settings 29

https://ldap3.readthedocs.io/en/latest/connection.html

django-windowsauth

(continued from previous page)

"first_name": "givenName",
"last_name": "sn",
"email": "mail",

}
}

The configuration above is the actual default configuration for this setting.

USER_QUERY_FIELD

Type str; Default to username; Not Required.
The User Model field used for searching the related LDAP User object.

When synchronizing users to LDAP, they are first need to be searched. This setting can allow you to specify the
Django User Model field that will be compared to the related LDAP Attribute using the USER_FIELD_MAP setting
when searching for the related user.

This setting may be useful when using a Custom User Model in your Django project. This is mentioned in the tutorial
Using Custom User Model Mappings.

Note: Make sure to use a unique field, that is unique at the LDAP side too. If multiple objects are found, the
synchronization will fail.

USER_QUERY_FILTER

Type dict; Default to {"objectCategory": "person"}; Not Required.
Filters used when searching for a user from LDAP

LDAP filters applied when querying LDAP for a matching user. The dictionary is translated to ldap3’s (Simplified
Query Language)[https://ldap3.readthedocs.io/en/latest/abstraction.html#simplified-query-language], then parsed to
an ordinary LDAP filter. All special operators implemented by ldap3 are available both keys and values (e.g. {”&Age”:
“> 21; < 65”}).

GROUP_ATTRS

Type str or tuple; Default to cn; Not Required.
The LDAP group attributes to search when matching to Django groups.

When synchronizing users against LDAP, you can replicate group memberships. When used, you may want to specify
what LDAP attributes are used when comparing the Django Group’s names to LDAP Groups.

This setting can be a single string for comparing a single attribute, or a tuple for comparing multiple attributes. When
comparing multiple attributes, if one of them matches the Django Group’s name, the user is added to that group.

30 Chapter 1. Features

https://ldap3.readthedocs.io/en/latest/abstraction.html#simplified-query-language

django-windowsauth

Warning: The comparing is done on the Python side by the ldap3 library. Using many attributes to search groups
may result in longer synchronization times.

SUPERUSER_GROUPS

Type tuple or str; Default to Domain Admins; Not Required.
LDAP Groups to check membership for setting Django User’s “is_superuser” flag.

When synchronizing users against LDAP, you can specify a list of LDAP Groups to match for setting the Django
User’s is_superuser flag. If the user is member in one of the listed LDAP groups, the is_superuser flag will be
set to True, otherwise it is set to False.

Configuring this setting to None will not modify the is_superuser flag.
Configuring this setting to a string is equal to a single length tuple.

The group membership is checked by comparing the groups listed in this setting to the LDAP Group Attributes
listed in GROUP_ATTRS setting.

STAFF_GROUPS

Type tuple or str; Default to Administrators; Not Required.
LDAP Groups to check membership for setting Django User’s “is_staff” flag.

When synchronizing users against LDAP, you can specify a list of LDAP Groups to match for setting the Django
User’s is_staff flag. If the user is member in one of the listed LDAP groups, the is_staff flag will be set to True,
otherwise it is set to False.

Configuring this setting to None will not modify the is_staff flag.
Configuring this setting to a string is equal to a single length tuple.

The group membership is checked by comparing the groups listed in this setting to the LDAP Group Attributes
listed in GROUP_ATTRS setting.

ACTIVE_GROUPS

Type tuple or str; Default to None; Not Required.
LDAP Groups to check membership for setting Django User’s “is_active” flag.

When synchronizing users against LDAP, you can specify a list of LDAP Groups to match for setting the Django
User’s is_active flag. If the user is member in one of the listed LDAP groups, the is_active flag will be set to
True, otherwise it is set to False.

1.15. LDAP Settings 31

django-windowsauth

Configuring this setting to None will not modify the is_active flag.
Configuring this setting to a string is equal to a single length tuple.

The group membership is checked by comparing the groups listed in this setting to the LDAP Group Attributes
listed in GROUP_ATTRS setting.

PROPAGATE_GROUPS

Type bool; Default to True; Not Required.
Propagate groups in order Superusers > Staff > Active.

When set to True, all groups configured in SUPERUSER_GROUPSwill be added to STAFF_GROUPS and ACTIVE_GROUPS,
and groups configured in STAFF_GROUPS with be added to ACTIVE_GROUPS.

GROUP_MAP

Type dict; Default is {}; Not Required.
Map one or more LDAP Groups membership to Django Group membership.

When synchronizing users against LDAP, you can specify a mapping of LDAP Groups to Django Groups. If the user
is member in one of the listed LDAP groups, it will be added to the respective Django Group.

The setting is configured as a dictionary where the keys are Django Groups names and the value is a string or a list
of LDAP Groups. The LDAP Groups are compared using the attributes listed in the GROUP_ATTRS setting.

When a user synchronizes, LDAP group membership will be checked directly or in-directly for at least one of the
listed groups. For each LDAP group that the user is found to be a member of, it will be added to the related Django
group, otherwise it will be removed from it. Groups that are not listed in this setting will not be affected by this.

Warning: When a group that is configured in this setting is missing, it will be created automatically.

FLAG_MAP

Type dict; Default is {}; Not Required.
Map User object boolean fields to one or more LDAP Groups membership check.

Used to synchronize boolean fields from the User object as a group membership check. If the user is member in one
of the listed LDAP groups, the respective boolean field will be set to True, otherwise it is set to False.

Configuring this setting to None will not modify the field.
Configuring this setting to a string is equal to a single length tuple.

The group membership is checked by comparing the groups listed in this setting to the LDAP Group Attributes
listed in GROUP_ATTRS setting.

32 Chapter 1. Features

django-windowsauth

User’s is_superuser, is_staff and is_active are added automatically from settings SUPERUSER_GROUPS,
STAFF_GROUPS and ACTIVE_GROUPS respectively.

1.16 Middleware

1.16.1 UserSyncMiddleware

Sync users against LDAP when is needed.

Sync interval configured by the WAUTH_RESYNC_DELTA setting.
Last sync validation process can be configured by the WAUTH_USE_CACHE setting.

This middleware must be positioned after the AuthenticationMiddleware and RemoteUserMiddleware middle-
ware.

MIDDLEWARE = [
...
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.auth.middleware.RemoteUserMiddleware',
'windows_auth.middleware.UserSyncMiddleware',
...

]

1.16.2 SimulateWindowsAuthMiddleware

Simulate a remote user authenticated through Windows Authentication. This is useful for developing and testing with-
out actually deploying the Django project to IIS.

When no actual windows authentication information passed from the IIS, this middleware will inject the request with
the REMOTE_USER header, just like if WAUTH_SIMULATE_USER had logged in via Windows Authentication.

This middleware is bypassed when DEBUG setting is not True.

Warning:
This is a security risk, and allows the impersonation of any user.
It is intended for development / testing only and should not be used on production.

You must configure the setting WAUTH_SIMULATE_USER to specify the user to impersonate.

MIDDLEWARE = [
'windows_auth.middleware.SimulateWindowsAuthMiddleware',
...

]
WAUTH_SIMULATE_USER = "EXAMPLE\\Administrator"

It should be positioned as high as possible in the middleware setting to allow for

1.16. Middleware 33

django-windowsauth

1.17 View Decorators

Provided with this module are some useful decorators to use on your views. Those decorators can be used on function
based view normally:

@domain_required
def my_view(request):

...

And for class-based view with the @method_decorator decorator

@method_decorator(domain_required, name='dispatch')
class MyView(TemplateView):

...

See also:
https://docs.djangoproject.com/en/3.1/topics/class-based-views/intro/#decorating-class-based-views

1.17.1 domain_required

Require that the logged on user has LDAP relation with a domain. In case it is not, redirect to login page.

Parameters
• domain: Check if is member in a specific domain (default: None)

• login_url: Login page URL (default: None)

• bypass_superuser: Allow superusers to bypass this requirement (default: True)

1.17.2 ldap_sync_required

Require the logged on user to be synced against LDAP. This can be used to override the global WAUTH_REQUIRE_RESYNC
and WAUTH_RESYNC_DELTA settings.

Parameters
• timedelta: Maximum acceptable time since the last synchronization (default: None)

• login_url: Login page URL (default: None)

• allow_non_ldap: Allow non-LDAP users to access (default: True)

• raise_exception: When sync fails, raise the exception and cause response status code 500 (default: False

Warning: When configuring WAUTH_USE_CACHE to True, this decorator will re-sync the user in regards to the
timedelta parameter

34 Chapter 1. Features

https://docs.djangoproject.com/en/3.1/topics/class-based-views/intro/#decorating-class-based-views

django-windowsauth

1.18 Signals

1.18.1 ldap_user_sync

Whenever a user is synced against LDAP, pre-saving.

Arguments:
• sender The LDAPUser instance that is being synced.

• ldap_user The ldap3 Entry instance received from LDAP server of the user being synced

• group_reader Reader cursor for all the user’s groups, already queried.

Example:

from django.dispatch import receiver
from ldap3 import Entry, Reader

from windows_auth.models import LDAPUser
from windows_auth.signals import ldap_user_sync

@receiver(ldap_user_sync)
def on_ldap_sync(sender: LDAPUser, ldap_user: Entry = None, group_reader: Reader = None):

do something...
pass

Warning: Any unhandled exception raised during the signal will terminate the sync process.

1.19 Models

1.19.1 LDAPUser

Used to store user domain information and perform domain related actions.

Fields:
• user - One to one relation for user model using get_user_model function.

• domain - User’s domain name (usually) as NetBIOS Name.

Methods:
• get_ldap_manager() - Get LDAPManager for user’s domain.

• get_ldap_attr(attribute, as_list) - Get LDAP attribute of the related LDAP user.

• get_ldap_user() - Get related LDAP user as ldap3 Entry object.

• get_ldap_groups() - get LDAP Reader for all groups the user is a member of.

• sync() - Synchronize Django user to related LDAP User.

The LDAPUser for a Django User can be accessed via user.ldap. For example, you can trigger sync with request.
user.ldap.sync(), or display the user’s Windows Logon Name with request.user.ldap.

1.18. Signals 35

django-windowsauth

Note: The LDAPUser is represented by the Down-level Logon Name or SPN determined by the WAUTH_USE_SPN
setting. More on that in the Settings.

1.19.2 LDAPUserManager

LDAPUser Accessible via LDAPUser.objects.

Methods:
• create_user() - Create a new user from LDAP.

1.20 Management Commands

1.20.1 createwebconfig

Generate web.config files with configurations for your Django Project’s IIS website

Arguments
• –name, -n FastCGI Handler Name (default: Django FastCGI).

• –static, -s Create a web.config to configure IIS to serve the static folder.

• –media, -m Create a web.config to configure IIS to serve the media folder.

• –windowsauth, -w Configure Windows Authentication as the only IIS Authentication option.

• –https Configure HTTP to HTTPS Redirect using IIS’s URL Rewrite module.

• –logs, -l Path for the WFastCGI logs.

• –override, -f Force override existing files.

Note: Before using the –static or –media flags, make sure to configure correctly the STATIC_ROOT and MEDIA_ROOT
settings.

Warning: In order for the web.config files to work correctly, you will need to unlock some IIS Configuration
Section. See the Install and Setup IIS section at Installation and Setup docs.

1.20.2 createtask

Add a management command to Windows Task Scheduler.

Arguments
• command Management command, wrapped with “command”.

• –predefined, -p Create from a predefined task.

• –name, -n Task name.

• –desc, -d Task description.

36 Chapter 1. Features

django-windowsauth

• –identity, -u Task principal identity (default: “NT Authority\LocalSystem”).

• –folder, -f Task folder location (default: Project’s name).

• –interval, -i Task execution interval as timedelta kwargs, e.g. “days=1,hours=12.5”.

• –random, -r Randomize execution time as timedelta kwargs, e.g. “days=1,hours=12.5”.

• –timeout, -t Execution time limit as timedelta kwargs, e.g. “days=1,hours=12.5” (default: 1 hour).

• –priority Task priority https://docs.microsoft.com/en-us/windows/win32/taskschd/tasksettings-priority

Predefined tasks
• clearsessions Clear sessions from database every week.

• clean_duplicate_history Clean duplicate history records from all models with history every 3 hours (from
django-simple-history).

• clean_old_history Clean history records older then 30 days from all models with history every day (from
django-simple-history).

• process_tasks Worker for background tasks processing (from django-background-tasks).

1.21 Change Log

1.21.1 1.4.0

Release date: Feb. 20, 2021

• ADDED: LDAPUserManager for manually creating users from LDAP.

• ADDED: createtask management command for creating Task Scheduler jobs.

• ADDED: ldap_user_sync signal.

• IMPROVED: LDAP Settings for Group Membership check propagate to one another.

• MODIFIED: Increased the default WAUTH_RESYNC_DELTA to every 1 day.

1.21.2 1.3.2

Release date: Jan 26, 2021

• FIXED: ProgrammingError Exception before first migration

• FIXED: Packaging configuration missing templates

1.21.3 1.3.1

Release date: Jan 15, 2021

• MODIFIED: Remove requirement for WAUTH_DOMAIN setting

• FIXED: OperationalError Exception before first migration

• FIXED: Incorrect packaging configuration

1.21. Change Log 37

https://docs.microsoft.com/en-us/windows/win32/taskschd/tasksettings-priority

django-windowsauth

1.21.4 1.3.0

Release date: Jan 10, 2021

• ADDED: LDAP Metrics collection to Database

• ADDED: LDAP Panel for django-debug-toolbar

• ADDED: LDAP Setting COLLECT_METRICS

• ADDED: Auto-close all LDAP connection on before process exit

• ADDED: View decorators domain_required and ldap_sync_required

• ADDED: --https parameter for createwebconfig for HTTPS Redirection

1.21.5 1.2.0

Release date: Dec 19, 2020

• ADDED: Setting WAUTH_ERROR_RESPONSE for custom sync error responses

• ADDED: Moved automatic sync login from Authentication Backend WindowsAuthBackend to a new Middle-
ware UserSyncMiddleware.

1.21.6 1.1

Release date: Dec 17, 2020

• First published version

38 Chapter 1. Features

	Features
	Quick Start
	Installation and Setup
	Install and Setup IIS
	Getting it
	Installing
	Configure
	Setup Logging
	Publish to IIS

	Deployment Checklist
	Migration
	From existing project
	To 1.4.0
	To 1.3.0
	To 1.2.0

	Serve Static Files through IIS
	Create Task Scheduler Jobs
	Create a task
	Using predefined tasks

	Using Custom User Model Mappings
	Using LDAP in your code
	Advice for Model - LDAP relations

	Managing Secrets
	Securing LDAP Connections
	Using SSL/TLS
	Using NTLM Authentication
	Using Kerberos (SASL)
	Optimize your code

	Customize Error Pages
	Debug with django-debug-toolbar
	Installation

	Collect Metrics
	Installation
	Usage

	Settings
	WAUTH_USE_SPN
	WAUTH_DOMAINS (Required)
	WAUTH_RESYNC_DELTA
	WAUTH_USE_CACHE
	WAUTH_REQUIRE_RESYNC
	WAUTH_ERROR_RESPONSE
	WAUTH_LOWERCASE_USERNAME
	WAUTH_IGNORE_SETTING_WARNINGS
	WAUTH_PRELOAD_DOMAINS
	WAUTH_SIMULATE_USER

	LDAP Settings
	Configuring
	Using defaults
	Extending LDAP Settings
	Base Settings
	SERVER
	USERNAME
	PASSWORD
	SEARCH_BASE
	USE_SSL
	READ_ONLY
	COLLECT_METRICS
	SERVER_OPTIONS
	CONNECTION_OPTIONS
	PRELOAD_DEFINITIONS
	USER_FIELD_MAP
	USER_QUERY_FIELD
	USER_QUERY_FILTER
	GROUP_ATTRS
	SUPERUSER_GROUPS
	STAFF_GROUPS
	ACTIVE_GROUPS
	PROPAGATE_GROUPS
	GROUP_MAP
	FLAG_MAP

	Middleware
	UserSyncMiddleware
	SimulateWindowsAuthMiddleware

	View Decorators
	domain_required
	ldap_sync_required

	Signals
	ldap_user_sync

	Models
	LDAPUser
	LDAPUserManager

	Management Commands
	createwebconfig
	createtask

	Change Log
	1.4.0
	1.3.2
	1.3.1
	1.3.0
	1.2.0
	1.1

