

django-windowsauth

Easy integration and deployment of Django projects into Windows Systems.

Features

	Deploy to Microsoft IIS quickly using wfastcgi [https://pypi.org/project/wfastcgi/] and createwebconfig command

	Authenticate via IIS’s Windows Authentication [https://docs.microsoft.com/en-us/iis/configuration/system.webserver/security/authentication/windowsauthentication/#:~:text=You%20can%20use%20Windows%20authentication,Windows%20accounts%20to%20identify%20users.&text=When%20you%20install%20and%20enable,the%20default%20protocol%20is%20Kerberos.]

	Authorize against Active Directory using ldap3 [https://ldap3.readthedocs.io/en/latest/] package

	Manage LDAP connections for easy integrations

	(Coming soon) Debug using django-debug-toolbar [https://django-debug-toolbar.readthedocs.io/en/latest/]

Installation and Setup

	Quick Start

	Installation and Setup

	Publish to Production

How-to Guides

	Serve Static Files through IIS

	Using Custom User Model Mappings

	Utilizing the LDAP Manager throughout Django

	Managing Secrets

	Securing LDAP Connections

	Customize Error Pages

	Debug with django-debug-toolbar

Reference

	Settings

	LDAP Settings

	Authentication Backend

	Models

	Management Commands

Quick Start

	Install with pip install django-windowsauth

	Run py manage.py migrate windows_auth

	Add “fastcgi application” with wfastcgi-enable

	Configure project settings:

INSTALLED_APPS = [
 "windows_auth",
]

MIDDLEWARE = [
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.auth.middleware.RemoteUserMiddleware',
]

AUTHENTICATION_BACKENDS = [
 "windows_auth.backends.WindowsAuthBackend",
 "django.contrib.auth.backends.ModelBackend",
]

WAUTH_DOMAINS = {
 "<your domain's NetBIOS Name> (EXAMPLE)": {
 "SERVER": "<domain FQDN> (example.local)",
 "SEARCH_BASE": "<search base> (DC=example,DC=local)",
 "USERNAME": "<bind account username>",
 "PASSWORD": "<bind account password>",
 }
}

optional
STATIC_URL = '/static/'
STATIC_ROOT = BASE_DIR / "static"

MEDIA_URL = '/media/'
MEDIA_ROOT = BASE_DIR / "media"

	Generate web.config files with py manage.py createwebconfig -s -m -w.

	Create new IIS Website from the project files

Installation and Setup

This is a detailed walk-through the django-windowsauth installation and setup process.

For easy and quick installation please refer to the Quick Start guide.

Install and Setup IIS

First, you may need to install IIS role.
This can be done though the Control Panel > Add and Remove Programs > Install Features (appwiz.cpl) or via Server Manager.

	Those are the features you should select:
	
	Application / CGI

	Security / Windows Authentication

	(suggested) Performance Features / Dynamic Content Compression

	(suggested) Health and Diagnostics / Request Monitor

	(suggested) Health and Diagnostics / Tracing

Next you will need to unlock some configuration section to later use the createwebconfig management command.

	To unlock configuration sections:
	
	Open IIS Manager > Configuration Editor

	Select section system.webServer/handlers

	Click Unlock section on the right sidebar.

	Repeat for sections system.webServer/security/authentication/anonymousAuthentication and system.webServer/security/authentication/windowsAuthentication.

Note

For more information visit the IIS Topic on Microsoft Docs: https://docs.microsoft.com/en-us/iis

Getting it

You can get django-windowsauth by using pip:

$ pip install django-windowsauth

If you want to install it from source, grab the git repository and run setup.py:

$ git clone https://github.com/danyi1212/django-windowsauth.git
$ python setup.py install

Installing

You will need to add the windows_auth application to the INSTALLED_APPS setting in you Django project settings file.

INSTALLED_APPS = [
 ...
 'windows_auth',
 ...
]

This will allow to execute the createwebconfig command, add the new model LDAPUer and register it’s Django Admin page.

Next, you will need to run the migrate management command to create the new SQL table of the new models.:

$ py manage.py migrate windows_auth

Note

This will perform migrations only for windows_auth app.
If you have other migrations pending, you may want to omit the windows_auth argument to perform all available migrations.

Configure

In order to receive correctly the authenticated user from the IIS Windows Authentication, you will need to add a middleware called RemoteUserMiddleware.
This middleware must be after AuthenticationMiddleware, that is usually provided by default with Django’s startproject template.

MIDDLEWARE = [
 ...
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.auth.middleware.RemoteUserMiddleware',
 ...
]

To process the information passed from the IIS Windows Authentication and translate it into a Django User, you will need to specify the WindowsAuthBackend authentication backend.

AUTHENTICATION_BACKENDS = [
 'windows_auth.backends.WindowsAuthBackend',
 'django.contrib.auth.backends.ModelBackend',
]

Note

Be aware, this configuration keeps the Django’s default ModelBackend in order to allow for fallback to Django Native Users.
It can be used to authenticate without IIS, when using the runserver management command for example.

This is usually not advised to configure for Production setups, but only for Development.

See also

Django documentation about Authenticating using REMOTE_USER https://docs.djangoproject.com/en/3.1/howto/auth-remote-user/

Next you will need to configure the settings for your Domain to allow for LDAP integration with Active Directory.

 WAUTH_DOMAINS = {
 "EXAMPLE": { # this is your domain's NetBIOS Name, same as in "EXAMPLE\\username" login scheme
 "SERVER": "example.local", # the FQDN of the DC server, usually is the FQDN of the domain itself
 "SEARCH_BASE": "DC=example,DC=local", # the default Search Base to use when searching
 "USERNAME": "EXAMPLE\\bind_account", # username of the account used to authenticate your Django project to Active Directory
 "PASSWORD": "<super secret>", # password for the binding account
 }
}

See also

About LDAP Search Base: https://docs.microsoft.com/en-us/windows/win32/ad/binding-to-a-search-start-point

(optionally) Configure file path and url path settings for your static and media files.

STATIC_URL = '/static/'
STATIC_ROOT = BASE_DIR / "static"

MEDIA_URL = '/media/'
MEDIA_ROOT = BASE_DIR / "media"

You may need to execute $ py manage.py collectstatic management command after modifying the STATIC_ROOT setting.

See also

Full how-to guide to Serve Static Files through IIS

Setup Logging

Throughout this whole module, logging is done to logger named wauth.
You may handle and configure this logger through Django’s setting LOGGING.

This can be done by adding the logger like so:

'wauth': {
 'handlers': ['console', 'file', 'mail_admins'],
 'level': 'INFO',
 'propagate': False,
},

Additionally, you may want to configure logging for ldap3. You can add this logger:

'ldap3': {
 'handlers': ['console', 'ldap'],
 'level': 'DEBUG',
 'propagate': False,
}

And make sure to configure ldap3 log type, like this:

from ldap3.utils.log import set_library_log_detail_level, BASIC
set_library_log_detail_level(BASIC)

The lines above can be added in your Django settings file, just after the LOGGING setting.
Remember to document about that in your code!

See also

More information of that on https://ldap3.readthedocs.io/en/latest/logging.html

For your convenience, those are the handles used in the examples above:

'handlers': {
 'console': {
 'class': 'logging.StreamHandler',
 'level': 'WARNING',
 },
 'file': {
 'level': 'INFO',
 'class': 'logging.handlers.RotatingFileHandler',
 'maxBytes': 2 ** 20 * 100, # 100MB
 'backupCount': 10,
 'filename': BASE_DIR / 'logs' / 'debug.log',
 },
 'ldap': {
 'level': 'INFO',
 'class': 'logging.handlers.RotatingFileHandler',
 'maxBytes': 2 ** 20 * 100, # 100MB
 'backupCount': 10,
 'filename': BASE_DIR / 'logs' / 'ldap.log',
 },
 'mail_admins': {
 'level': 'ERROR',
 'class': 'django.utils.log.AdminEmailHandler',
 'include_html': True,
 },
},

Note

You will need to configure settings for sending emails to use the mail_admins handler:
https://docs.djangoproject.com/en/3.1/topics/email/

Publish to IIS

First, we will need to create the web.config files for the IIS Website configuration.
This can be done simply by running the management command::

$ py manage.py createwebconfig -s -m -w

Notice the -s and -m switches, those are to add configurations for Serving Static Files though IIS.
You may want to omit those switches if you are not planning to serve static files though IIS.

The -w parameter configures IIS’s Windows Authentication and disables Anonymous Authentication in the web.config file.
You may want to change those settings manually to avoid unlocking those configuration sections.

See also

Reference for createwebconfig at Management Commands

Next you will need to create a new IIS Website for your Django Project.

	Open IIS Manager

	Right-click over sites

	Click Add website…

	Give a name for your site (should use the same as for your Django project)

	Specify Physical path for the root of your Django project folder (where the manage.py is)

	Provide binding information as needed (can be changed later)

Congratulation, now you should be able to browse to your new website!

Next are some things to setup and verify before publishing to production…

Publish to Production

This tutorial is still in the process of writing…

Serve Static Files through IIS

Generally websites have static files such as CSS, JS, Images served to clients beside the primary responses.
Those files are considered as “Static Files” because they can be delivered without being generated, modified or processed.

In Django, static files can be served by the Django Framework itself. This is very convenient during Development, but is not suitable for Production use.

See also

About Serving Static Files: https://docs.djangoproject.com/en/3.1/howto/static-files/

For production use, it is advised to let the Web Server to serve the Static Files.
This is how it can be done:

Note

This how-to describes serving both Static Files and Media Files.
In case you don’t need or use one of those features, you can just ignore the respective parts in the tutorial.

First you will need to configure the following settings:

STATIC_URL = '/static/'
STATIC_ROOT = BASE_DIR / "static"

MEDIA_URL = '/media/'
MEDIA_ROOT = BASE_DIR / "media"

The STATIC_URL represents the file path over HTTP, while the STATIC_ROOT directs to the Physical path of the files in the Web Server’s OS.
Meanwhile from the IIS point of view, the HTTPS path is derived from the file’s Physical path location.
Although this can be altered using Virtual Directories, it is usually advised not to.

The same applies for the MEDIA_URL and MEDIA_ROOT settings.

Next we will need to create web.config files in each folder to configure IIS to server Static Files.

Note

Any time the STATIC_ROOT setting is changes, you will need to start over from this step.

This can be done by running the createwebconfig management command::

$ py manage.py createwebconfig -s -m

The -s switch is used configure the STATIC_ROOT folder, while -m switch is used to configure the MEDIA_ROOT folder.

Now all we need to do is to collect all the static files from the many Django apps into the STATIC_ROOT folder.
This can be done by running the collectstatic management command::

$ py manage.py collectstatic

See also

About collectstatic command: https://docs.djangoproject.com/en/3.1/ref/contrib/staticfiles/#django-admin-collectstatic

At this point, in case you have configured the URL path and Physical path the same, the Web Server should serve all static files correctly.

In case you have configured different paths, you will probably want to setup Virtual Directories.

This can be useful when you want to store Static and / or Media file outside the Django project’s folder (the website’s root folder), on a separate disk for example.

To create the Virtual Directories:

	Open IIS Manager

	Right-click on your website

	Click “Add Virtual Directory…”

	Set the “Alias” for the same value as STATIC_URL setting

	Set the “Physical Path” for the same value STATIC_ROOT setting

You may do the same with the MEDIA_URL and MEDIA_ROOT settings in order to add Virtual Directory for serving Media Files.

See also

Microsoft Docs on IIS Virtual Directories https://docs.microsoft.com/en-us/iis/get-started/planning-your-iis-architecture/understanding-sites-applications-and-virtual-directories-on-iis#virtual-directories

Using Custom User Model Mappings

This tutorial is still in the process of writing…

Utilizing the LDAP Manager throughout Django

This tutorial is still in the process of writing…

Managing Secrets

This tutorial is still in the process of writing…

Securing LDAP Connections

This tutorial is still in the process of writing…

Customize Error Pages

This tutorial is still in the process of writing…

Debug with django-debug-toolbar

This feature is still not available in this version…

Settings

WAUTH_USE_SPN

Type bool; Default to False; Not Required.

Expect the REMOTE_USER header value to be in Windows SPN username scheme.

By default, IIS will present the authenticated user by it’s Down-Level Logon Name [https://docs.microsoft.com/en-us/windows/win32/secauthn/user-name-formats#down-level-logon-name], for example “EXAMPLE\username”.
Setting this value to True will will expect the authenticated user to be presented by it’s User Principal Name [https://docs.microsoft.com/en-us/windows/win32/secauthn/user-name-formats#user-principal-name], for example “username@example.local”.

Note

When using SPN the domain of the authenticated user will be detected by the Domain’s FQDN instead of it’s NetBIOS Name!

This means that you will need to configure WAUTH_DOMAINS by created with the FQDN of their domain, and not their NetBIOS Name.
This is also means all new LDAPUser domain values will be FQDNs and not NetBIOS Names

If you are planning to migrate between using Down-Level to SPN, first of all don’t.
In case you still need to switch between them, you can either manually replace the LDAPUser’s domain values from the old NetBIOS Names to the new FQDNs, or just delete all LDAPUsers and let them be created again when a user login again after change.

WAUTH_DOMAINS (Required)

Type dict; Default to None; Required.

LDAP Settings for each domain.

Dictionary of domain NetBIOS Names and their settings for LDAP connection.
Domain LDAP Settings can be written as a dictionary with the settings in UPPERCASE and their values, or as an LDAPSettings object.

A default domain settings can be used as a fallback settings for requested domains that are missing from WAUTH_DOMAINS by using “__default__” as the domain name.
When using only the default domain settings, you may want to specify manually the WAUTH_PRELOAD_DOMAINS setting.

Each of the domain settings can be configured as a function that will be used as callback when accessing the setting and be called with the domain as it first argument.
This can be used with lambda functions for lazy setting values.

See also

More information about domain LDAP Settings can be found at LDAP Settings reference.

WAUTH_RESYNC_DELTA

Type timedelta, str, int or None; Default to timedelta(minutes=10); Not Required.

Minimum time (seconds) until automatic re-sync user’s fields and permissions against LDAP.

Configure when to automatically synchronize the user’s fields and groups (and permissions) against Active Directory via LDAP.
On each request the user makes, if the user haven’t synchronized in the time specified, the WindowsAuthBackend attempt to perform synchronization again on the user.
This is used to make sure the user permissions and properties match those in Active Directory.

The value is used as number of seconds in int, str or any other object that can be casted to int.
The value can also be a django.utils.timezone.timedelta object.

In case you need to synchronize the user on every request, you can configure the setting to 0.

To disable automatic synchronizations via LDAP, you can configure the setting to None or False.

Note

Synchronizing user via LDAP can delay the Request / Response processing by only few ms, but your experience may vary.
You can debug your setup using Debug with django-debug-toolbar.

WAUTH_USE_CACHE

Type boot; Default to DEBUG, otherwise False; Not Required.

Use cache backend instead of DB for determining user re-sync.

When using user automatic synchronization, the check whether user requires a re-sync is verified against the LDAPUser model and it requires an SQL Query.

To avoid this query and allow for better performance, this setting can allow you to use Django’s cache framework [https://docs.djangoproject.com/en/3.1/topics/cache/] instead of the default model verification against the DB.
This will require you to setup your cache backend in setting CACHES.

In production, it is advised to use the cache setting instead of the default model based verification.

WAUTH_REQUIRE_RESYNC

Type boot; Default to False; Not Required.

Raise exception and return Error 500 when user failed to synced to domain.

When using user automatic synchronization, propagate any exception raised during synchronization.
This will result with the user receiving a Error 500 when they fail to synchronize properly.

This is useful for security sake, when requiring users to have the most updated fields and permissions.

While developing in debug, it is usually useful to receive information about the synchronization exception.

Note

In any case, the synchronization exception will be logged as error with the exception information included.
If you have setup logging and email reporting for server admins, you can also receive the exception details by email.

See the documentation about ../installation/logging

WAUTH_LOWERCASE_USERNAME

Type boot; Default to True; Not Required.

Lowercase the username to mimic non-case sensitive LDAP backends like Active Directory.

Windows systems, like Active Directory are non-case sensitive.
While python, Django, and most Databases are case sensitive, you can lower case every username to mimic the non-case sensitive behavior of the Windows system.

WAUTH_IGNORE_SETTING_WARNINGS

Type boot; Default to True; Not Required.

Skip verification of domain settings on server startup.

By default, on every startup of you Django project the settings are validated.

This setting can be used to ignore the warnings raised by detecting users with domains missing from settings in WAUTH_DOMAINS, and Unknown Settings detected in domain LDAP Settings.

WAUTH_PRELOAD_DOMAINS

Type tuple or bool; Default to None; Not Required.

List of domains to preload and connect during Django project startup

LDAP Connections are cached in process memory to retain connections for multiple request / response cycles.
This setting lists the domains to preload, connection and bind during you Django project startup.
This way, the first request for a process will not have wait extra time for the LDAP connection to load and connect.

When the setting is configured to None or True, all the domains configured in WAUTH_DOMAINS settings are preloaded.
In case you use only the default domain settings in the WAUTH_DOMAINS setting, it is advised to manually configure this setting to preload the relevant domains.

To enable LDAP Connection lazy loading, you can set this setting to False.

Note

When using runserver command, due to the server first validating models before loading the project, it may seam like multiple connections get initiated for the same domains.

By setting this setting, it may cause multiple LDAP connections to be established and terminate quickly for each domain.

You should not be warned by this behavior as this is behaves like a quick connection test to your LDAP server, and this is should only happened during development phase.
In case you would like to avoid this behavior anyway, you can use the runserver --noreload parameter, or modifying the WAUTH_PRELOAD_DOMAINS setting to False when debugging.

LDAP Settings

LDAP Settings are the settings used to configure LDAP connection to domains.
They are configured inside the WAUTH_DOMAINS setting of your Django project settings file, as the value for each domain key.

Configuring

LDAP Settings can be represented as a regular Python Dictionary, like this:

WAUTH_DOMAINS = {
 "EXAMPLE": {
 "SERVER": "example.local",
 "SEARCH_BASE": "DC=example,DC=local",
 "USERNAME": "EXAMPLE\\bind_account",
 "PASSWORD": "*********",
 }
}

Or as an LDAPSettings object, like this:

WAUTH_DOMAINS = {
 "EXAMPLE": LDAPSettings(
 SERVER="example.local",
 SEARCH_BASE="DC=example,DC=local",
 USERNAME="EXAMPLE\\bind_account",
 PASSWORD="*********",
),
}

When using a Python Dictionary, each setting can be configured to a callback function that will be called with the specified domain as first and only argument.
For example:

WAUTH_DOMAINS = {
 "EXAMPLE": {
 "USERNAME": lambda domain: f"{domain}\\bind_account",
 }
}

Using defaults

Sometimes when using multiple domains it is easier to configure settings globally or to specify defaults for unanticipated domains.

When configuring LDAP Settings as a Python Dictionary, this can be done by using the "__default__" key in WAUTH_DOMAINS settings.
Every setting configured in the "__default__", and are not configured explicitly for the domain, in will propagate.
For example:

WAUTH_DOMAINS = {
 "__default__": {
 "USE_SSL": True,
 },
 "EXAMPLE1": {
 "SERVER": "example.local",
 "SEARCH_BASE": "DC=example,DC=local",
 "USERNAME": "EXAMPLE\\bind_account",
 "PASSWORD": "*********",
 "USE_SSL": False,
 },
 "EXAMPLE2": {
 "SERVER": "example.local",
 "SEARCH_BASE": "DC=example,DC=local",
 "USERNAME": "EXAMPLE\\bind_account",
 "PASSWORD": "*********",
 }
}

In this case, EXAMPLE1 will have USE_SSL = False and EXAMPLE2 will have USE_SSL = True.

When using LDAPSettings objects, this can be done by inheriting and creating a custom LDAPSettings class.
For example:

@dataclass()
class MyLDAPSettings(LDAPSettings):
 USE_SSL: bool = False

WAUTH_DOMAINS = {
 "EXAMPLE": MyLDAPSettings(
 SERVER="example.local",
 SEARCH_BASE="DC=example,DC=local",
 USERNAME="EXAMPLE\\bind_account",
 PASSWORD="*********",
),
}

Extending LDAP Settings

Sometimes it is useful to have some extra LDAP Settings for use with the LDAP Manager.

It is possible to create a custom LDAPSettings class and use it to configure the LDAP Settings for domains.
Those extra setting will be available in the settings attribute of LDAPManager objects, and can be used throughout your code.
Those settings should not affect the existing settings used by django-windowsauth for User synchronization or any other uses.

Custom LDAP Settings objects can be created by inheriting from the LDAPSettings dataclass, like so:

@dataclass()
class MyLDAPSettings(LDAPSettings):
 EXTRA_SETTING: str = "Hello, world!"

WAUTH_DOMAINS = {
 "EXAMPLE": MyLDAPSettings(
 SERVER="example.local",
 SEARCH_BASE="DC=example,DC=local",
 USERNAME="EXAMPLE\\bind_account",
 PASSWORD="*********",
),
}

Then the setting could be accessed from LDAPManager object:

>>> from windows_auth.ldap import get_ldap_manager
>>> manager = get_ldap_manager("EXAMPLE")
>>> manager.settings.EXTRA_SETTING
"Hello, world!"

Base Settings

SERVER

Type bool; Required.

FQDN, IP, or URL of the LDAP Server.

The Fully Qualified Domain Name, IP Address or complete URL in the scheme scheme://hostname:hostport of the LDAP Server.
This setting will be used as host property for ldap3’s Server [https://ldap3.readthedocs.io/en/latest/server.html] object.

When using Active Directory, this address should direct to a DC Server (Domain Controller) for the domain.
By default, the FQDN of the domain itself will be resolved into your current configured DC Server.
That way, in case you have multiple DC servers in your domain, you will be dynamically changing the server you are accessing.

See also

From the Microsoft Docs https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/plan/domain-controller-location

USERNAME

Type str; Required.

The account to be used when binding to the LDAP Server.

The username in one of the Credentials Manager API’s formats (Down-Level or SPN) [https://docs.microsoft.com/en-us/windows/win32/secauthn/user-name-formats#user-principal-name] of a user with the permissions needed for your application.
By default, read-only permissions for the user accounts that are able to authenticate via IIS Windows Authentication to your website is needed.

If you are planing to use NTLM authentication to your LDAP Server, the username must be in the Down-Level Logon Name format (DOMAIN\username).

In production, it is advised to use a dedicated Service Account to authorize your application in your Active Directory domain.

PASSWORD

Type str; Required.

Password of the user to be used when binding to the LDAP Server.

The password for the user used to authenticate to the LDAP Server.

Warning

It is highly advised not to store sensitive secrets like password in your code.
You should use a safe and secure place to store the password. See the tutorial manage_secrets

SEARCH_BASE

Type str; Required.

The DN of the container used as starting point for LDAP searches.

When querying LDAP Directories, it is required to specify the root container to start the search from.
Then, depending on the search scope, the objects are searched directly or indirectly in respect to the search base container.

For searches throughout all the domain’s containers, the search base DN is usually in the format DC=<domain name>,DC=<parent domain>.

See also

Microsoft docs about search bases https://docs.microsoft.com/en-us/windows/win32/ad/binding-to-a-search-start-point

USE_SSL

Type bool; Default to True; Not Required.

Connect to LDAP over secure port, usually 636.

This setting is used as the use_ssl parameter for the ldap3 Server object.

See also

ldap3 Server object docs https://ldap3.readthedocs.io/en/latest/server.html

READ_ONLY

Type bool; Default to True; Not Required.

Prevent modify, delete, add and modifyDn (move) operations.

Connect to the LDAP Server with a read only protection.
This can farther minimize risks and vulnerabilities from unwanted operations against the LDAP Server.

This setting is used as the read_only parameter for the ldap3 Connection object.

Warning

This is not guaranteed to be a risk / vulnerabilities free connection, make sure to minimize the bind account’s permissions

SERVER_OPTIONS

Type dict; Default to {}; Not Required.

Extra parameters for the ldap3 Server object.

A dictionary of extra keyword arguments to pass when creating the ldap3 Server object.

See also

For more information, see ldap3 docs https://ldap3.readthedocs.io/en/latest/server.html

CONNECTION_OPTIONS

Type dict; Default to {}; Not Required.

Extra parameters for the ldap3 Connection object.

A dictionary of extra keyword arguments to pass when creating the ldap3 Connection object.

See also

For more information, see ldap3 docs https://ldap3.readthedocs.io/en/latest/connection.html

PRELOAD_DEFINITIONS

Type tuple; Default is shown below; Not Required.

Preload LDAP schema for defining LDAP objects in Python.

A list of LDAP Object definitions to preload while connecting to the LDAP Server.
This caches ldap3 ObjectDef objects on the LDAPManager object for each defined object class.
The object definitions are later get used for parsing the objects received from querying the LDAP Directory.
Preloading the object definitions can minimize the extra delay for first query for an object.

The definitions can be listed as a simple string referring to an LDAP object class, or a 2 valued tuple with the LDAP object class string on the first value, and a list of extra attributes on the second value.
For example:

{
 "PRELOAD_DEFINITIONS": (
 ("user", ["sAMAccountName"]),
 "group"
),
}

The configuration above is the actual default configuration for this setting.

USER_FIELD_MAP

Type dict; Default is shown below; Not Required.

Translate User Model fields to LDAP User object attributes.

Provide a mapping for your Django User Model fields to the LDAP User object attributes.
Those mappings are used when synchronizing Django Users to their related LDAP Users.

In case you using a Custom User Model in your Django project, you also will be able to map them to LDAP Attributes.
This is mentioned in the tutorial Using Custom User Model Mappings.

Note

Make sure to specify the needed attributes when preloading definitions for non-default attributes.

{
 "USER_FIELD_MAP": {
 "username": "sAMAccountName",
 "first_name": "givenName",
 "last_name": "sn",
 "email": "mail",
 }
}

The configuration above is the actual default configuration for this setting.

USER_QUERY_FIELD

Type str; Default to username; Not Required.

The User Model field used for searching the related LDAP User object.

When synchronizing users to LDAP, they are first need to be searched.
This setting can allow you to specify the Django User Model field that will be compared to the related LDAP Attribute using the USER_FIELD_MAP setting when searching for the related user.

This setting may be useful when using a Custom User Model in your Django project.
This is mentioned in the tutorial Using Custom User Model Mappings.

Note

Make sure to use a unique field, that is unique at the LDAP side too.
If multiple objects are found, the synchronization will fail.

GROUP_ATTRS

Type str or tuple; Default to cn; Not Required.

The LDAP group attributes to search when matching to Django groups.

When synchronizing users against LDAP, you can replicate group memberships.
When used, you may want to specify what LDAP attributes are used when comparing the Django Group’s names to LDAP Groups.

This setting can be a single string for comparing a single attribute, or a tuple for comparing multiple attributes.
When comparing multiple attributes, if one of them matches the Django Group’s name, the user is added to that group.

Warning

The comparing is done on the Python side by the ldap3 library.
Using many attributes to search groups may result in longer synchronization times.

SUPERUSER_GROUPS

Type tuple or str; Default to Domain Admins; Not Required.

LDAP Groups to check membership for setting Django User’s “is_superuser” flag.

When synchronizing users against LDAP, you can specify a list of LDAP Groups to match for setting the Django User’s is_superuser flag.
If the user is member in one of the listed LDAP groups, the is_superuser flag will be set to True, otherwise it is set to False.

Configuring this setting to None will not modify the is_superuser flag.

Configuring this setting to a string is equal to a single length tuple.

The group membership is checked by comparing the groups listed in this setting to the LDAP Group Attributes listed in GROUP_ATTRS setting.

STAFF_GROUPS

Type tuple or str; Default to Administrators; Not Required.

LDAP Groups to check membership for setting Django User’s “is_staff” flag.

When synchronizing users against LDAP, you can specify a list of LDAP Groups to match for setting the Django User’s is_staff flag.
If the user is member in one of the listed LDAP groups, the is_staff flag will be set to True, otherwise it is set to False.

Configuring this setting to None will not modify the is_staff flag.

Configuring this setting to a string is equal to a single length tuple.

The group membership is checked by comparing the groups listed in this setting to the LDAP Group Attributes listed in GROUP_ATTRS setting.

ACTIVE_GROUPS

Type tuple or str; Default to None; Not Required.

LDAP Groups to check membership for setting Django User’s “is_active” flag.

When synchronizing users against LDAP, you can specify a list of LDAP Groups to match for setting the Django User’s is_active flag.
If the user is member in one of the listed LDAP groups, the is_active flag will be set to True, otherwise it is set to False.

Configuring this setting to None will not modify the is_active flag.

Configuring this setting to a string is equal to a single length tuple.

The group membership is checked by comparing the groups listed in this setting to the LDAP Group Attributes listed in GROUP_ATTRS setting.

GROUP_MAP

Type dict; Default is {}; Not Required.

Map one or more LDAP Groups membership to Django Group membership.

When synchronizing users against LDAP, you can specify a mapping of LDAP Groups to Django Groups.
If the user is member in one of the listed LDAP groups, it will be added to the respective Django Group.

The setting is configured as a dictionary where the keys are Django Groups names and the value is a string or a list of LDAP Groups.
The LDAP Groups are compared using the attributes listed in the GROUP_ATTRS setting.

When a user synchronizes, LDAP group membership will be checked directly or in-directly for at least one of the listed groups.
For each LDAP group that the user is found to be a member of, it will be added to the related Django group, otherwise it will be removed from it.
Groups that are not listed in this setting will not be affected by this.

Warning

When a group that is configured in this setting is missing, it will be created automatically.

Authentication Backend

This reference is not available yet…

Models

LDAPUser

Used to same user’s domain information and perform domain related actions.

	Fields:
	
	user - One to one relation for user model using get_user_model function.

	domain - User’s domain name (usually) as NetBIOS Name.

	Methods:
	
	get_ldap_manager() - Get LDAPManager for user’s domain.

	get_ldap_attr(attribute, as_list) - Get LDAP attribute of the related LDAP user.

	get_ldap_user() - Get related LDAP user as ldap3 Entry object.

	get_ldap_groups() - get LDAP Reader for all groups the user is a member of.

	sync() - Synchronize Django user to related LDAP User.

The LDAPUser for a Django User can be accessed via user.ldap.
For example, you can trigger sync with request.user.ldap.sync(), or display the user’s Windows Logon Name with request.user.ldap.

Note

The LDAPUser is represented by the Down-level Logon Name or SPN determined by the WAUTH_USE_SPN setting.
More on that in the Settings.

Management Commands

createwebconfig

This reference is not available yet…

Index

 _static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 django-windowsauth

 		
 Quick Start

 		
 Installation and Setup

 		
 Install and Setup IIS

 		
 Getting it

 		
 Installing

 		
 Configure

 		
 Setup Logging

 		
 Publish to IIS

 		
 Publish to Production

 		
 Serve Static Files through IIS

 		
 Using Custom User Model Mappings

 		
 Utilizing the LDAP Manager throughout Django

 		
 Managing Secrets

 		
 Securing LDAP Connections

 		
 Customize Error Pages

 		
 Debug with django-debug-toolbar

 		
 Settings

 		
 WAUTH_USE_SPN

 		
 WAUTH_DOMAINS (Required)

 		
 WAUTH_RESYNC_DELTA

 		
 WAUTH_USE_CACHE

 		
 WAUTH_REQUIRE_RESYNC

 		
 WAUTH_LOWERCASE_USERNAME

 		
 WAUTH_IGNORE_SETTING_WARNINGS

 		
 WAUTH_PRELOAD_DOMAINS

 		
 LDAP Settings

 		
 Configuring

 		
 Using defaults

 		
 Extending LDAP Settings

 		
 Base Settings

 		
 SERVER

 		
 USERNAME

 		
 PASSWORD

 		
 SEARCH_BASE

 		
 USE_SSL

 		
 READ_ONLY

 		
 SERVER_OPTIONS

 		
 CONNECTION_OPTIONS

 		
 PRELOAD_DEFINITIONS

 		
 USER_FIELD_MAP

 		
 USER_QUERY_FIELD

 		
 GROUP_ATTRS

 		
 SUPERUSER_GROUPS

 		
 STAFF_GROUPS

 		
 ACTIVE_GROUPS

 		
 GROUP_MAP

 		
 Authentication Backend

 		
 Models

 		
 LDAPUser

 		
 Management Commands

 		
 createwebconfig

_static/file.png

